

TESTING FOR THE VERIFICATION OF COMPLIANCE OF PV INVERTER WITH : ENGINEERING RECOMMENDATION G59 ISSUE 3 AMENDMENT 2 SEPTEMBER 2015, RECOMMENDATIONS FOR THE CONNECTION OF GENERATING PLANT TO THE DISTRIBUTION SYSTEM OF LICENSED DISTRIBUTION NETWORK OPERATORS

Test Report Number	2217 / 1094 – 9
Туре	SSFA
Tested Model	SOFAR 6KTLM
Variant Models	SOFAR 5KTLM G2, SOFAR 3.6
APPLICANT	
Name	SGS Tecnos S./
Address:	C/ Trespaderne,

Procedure: PE.T-LE-62

AR 6KTLM-G2 AR 5KTLM-G2, SOFAR 4.6KTLM-G2, SOFAR 4KTLM-SOFAR 3.6KTLM-G2, SOFAR 3KTLM-G2

Name	:
Address	:
Hired by	:
Address	:

Tecnos S.A. (Certification Body)

espaderne, 29 - Edificio Barajas 1 28042 MADRID (Spain)

Shenzhen SOFARSOLAR Co., Ltd.

5/F,Building 4, Antongda Industrial Park, No. 1 Liuxian Avenue, Xin'an Street, Bao'an District, Shenzhen City, Guangdong Province, P.R. China

TESTING LABORATORY

Name:	SGS Tecnos, S.A. (Electrical Testing Laboratory)	
Address	C/ Trespaderne, 29 - Edificio Barajas 1 28042 MADRID (Spain)	
Conducted (tested) by:	Roger Hu (Project Engineer)	kE
Approved by:	Omar Kalim (Technical Reviewer)	
	Fernando Montes	
	(Laboratory Technical Manager)	
Date of issue:	01/03/2018	
Number of pages	101	

Important Note:

- This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.
- This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Test Report Version	Date	Resume
2217 / 1094 – 9	01 / 03 / 2018	First issuance

Test Report Historical Revision:

INDEX

1	SCOPE.		4
2	GENERA	AL INFORMATION	
2	.1	Testing Period and Climatic conditions	
2	.2	Equipment under Testing	
2	.3	Test equipment list	
2	2.4	Measurement uncertainty	
2	.5	Test set up of the different standard	9
2	2.6	Definitions	10
3	RESUME	E OF TEST RESULTS	11
4	TEST RE	ESULTS	
4	.1	Functional Testing	
	4.1.1	Disconnection Times	
	4.1.2	Over/ Under Voltage	
	4.1.3	Over/ Under Frequency	
	4.1.4	No trip Tests	
	4.1.5	Loss of Mains test	
	4.1.6	Reconnection	
	4.1.7	Frequency drifts and step changes	71
4	.2	Power Quality	
	4.2.1	Current Harmonics	
	4.2.2	Power Factor	
	4.2.3	Voltage Flicker	
	4.2.4	DC Injection	
	4.2.5	Self Monitoring solid state distribution	
	4.2.6	Short circuit current contribution	
	4.2.7	Electromagnetic Compatibility	
5	PICTURE	ES	
6	ELECTR	ICAL SCHEMES	
7	CE COI	NFORMITY CERTIFICATE	

1 SCOPE

SGS Tecnos, S.A. (Electrical Testing Laboratory) has been contract by SGS Tecnos, S.A. (Certification Body), in order to perform the testing according the "Engineering Recommendation G59 Issue 3 Amendment 2 September 2015, Recommendations for the connection of generating plant to the distribution system of licensed distribution network operator".

2 GENERAL INFORMATION

2.1 TESTING PERIOD AND CLIMATIC CONDITIONS

The necessary testing has been performed along 12 working days between the 30th of November and the 17th of December of 2017.

All the tests and checks have been performed at 25 ± 5°C, 96 kPa ± 10 kPa and 40% RH ± 10% RH).

SITE TEST

Name	:
Address	:

Shenzhen SOFARSOLAR Co., Ltd.

5/F,Building 4, Antongda Industrial Park, No. 1 Liuxian Avenue, Xin'an Street, Bao'an District, Shenzhen City, Guangdong Province, P.R. China

2.2 EQUIPMENT UNDER TESTING

Apparatus type	:
Installation	:
Manufacturer	:
Trade mark	:
Model / Type reference	:
Serial Number	:
Software Version	:
Rated Characteristics	:

Solar Grid-tied Inverter Fixed (permanent connection) Shenzhen SOFARSOLAR Co., Ltd.

SOFAR 6KTLM-G2 ZG1ES060H61001 V0.22 DC input: 90-580V, 11/11A AC output: 230V, 50Hz, 27.3A, 6000VA

Date of manufacturing: 2017

Test item particulars	
Input::	90-5
Output	230\
Class of protection against electric shock :	Clas
Degree of protection against moisture:	IP 6
Type of connection to the main supply:	ΤN
Cooling group:	Heat
Modular:	No
Internal Transformer:	No

90-580V, 11/11A 230V, 50Hz, 27.3A, 6000VA Class I IP 65 TN Heat sink No No

ing place (representative).	
SSEAR	Solar Grid-tied Inverter
Model No.	SOFAR 6KTLM-G2
Max.DC input Voltage	600V
Operating MPPT voltage range	90~580V
Max. Input current	2x11A
Max. PV lsc	2x13.2A
Nominal Grid Voltage	230V
Max. Output Current	27.3A
Nominal Grid Frequency	50Hz
Nominal Output power	6000W
Max. Output power	6000VA
Power factor	1(adjustable+/-0.8)
Ingress protection	IP65
Operating Temperature Range	-25~+60°C
Protective Class	Class I
Manufacturer: Shenzhen SOFARS Address:5/F,Building 4,Antongda Indus Street,Bao'anDistrict,Shenzhen City,Gr	OLAR Co., Ltd. strial Park,NO.1 Liuxian Avenue,Xin'an uangdong Province,P.R.China
SAAXXXXXX VDE0126-1-1,G59/3,EN UTE C15-712-1	150438,C10/11,AS4777,RD1699,
□ i <u>∧</u> C € <u>∕</u>	📐 🔊 🔬 📠 🥻

Note:

- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation
- 3. Labels of other models are as the same with SOFAR 6KTLM-G2's except the parameters of rating.

Equipment Under Testing:

- SOFAR 6KTLM-G2

The variants models are:

- SOFAR 5KTLM-G2,
- SOFAR 4.6KTLM-G2,
- SOFAR 4KTLM-G2,
- SOFAR 3.6KTLM-G2,
- SOFAR 3KTLM-G2

The variants models have been included in this test report without tests because the following features don't change regarding to the tested model:

- Same connection system and hardware topology
- Same control algorithm.
- Output power within 2,5 and 2/3 of the EUT or Modular inverters.
- Same Firmware Version

The results obtained apply only to the particular sample tested that is the subject of the present test report. The most unfavorable result values of the verifications and tests performed are contained herein. Throughout this report a point (comma) is used as the decimal separator.

2.3 TEST EQUIPMENT LIST

No.	Equipment Name	MARK/Model No.	Equipment No.	Equipment calibration due date
1	Digital oscilloscope	Agilent / DSO5014A	MY50070288	2018-02-15
2	Current clamp	FLUKE / i1000s	30413441	2018-02-15
3	Differential probe	Sanhua / SI-9110	111134	2018-02-15
4	Power analyzer	ZLG / PA3000	PA3005-P0005- 1246	2018-02-15
5	Temperature & Humidity meter	VICTOR / VC230A	WS01	2018-09-03
6	Power analyzer	YOKOGAWA / WT 3000	EP-011	2018-08-05
7	Digital oscilloscope	YOKOGAWA/DL 850	EP-001	2018-10-22
No.	Equipment Name	MARK/Model No.	SGS CODE (DIE)	Equipment calibration due date
8	Multimeter	FLUCKE / 289	DIE.560040	02/11/2018
9	Current Clamp	HIOKI / 3285	DIE.510051	06/02/2018

2.4 MEASUREMENT UNCERTAINTY

Associated uncertainties through measurements showed in this this report are the maximum allowable uncertainties.

Magnitude	Uncertainty	
Voltage measurement	±1.5 %	
Current measurement	±2.0 %	
Frequency measurement	±0.2 %	
Time measurement	±0.2 %	
Power measurement	±2.5 %	
Phase Angle	±1°	
Temperature	±3º C	
Note1: Measurements uncertainties showed in this table are maximum allowable uncertainties. The measurement uncertainties associated with other parameters measured during the tests are in the laboratory at disposal of the solicitant.		

2.5 TEST SET UP OF THE DIFFERENT STANDARD

Below is the simplified construction of the test set up.

Different equipment has been used to take measures as it shows in chapter 2.3. Current and voltage clamps have been connected to the inverter input / output for all the tests. All the tests described in the following pages have used this specified test setup.

The test bench used includes:

EQUIPMENT	MARK / MODEL	RATED CHARACTERISTICS	OWNER / ID.CODE
AC source	Chroma / 61860	100KVA 10-300Vrms 45-65Hz	
DC source	Chroma / 62150H- 1000S	0 – 1000Vdc (0.01V step) 0 – 40A (0.01A step)	

2.6 Definitions

EUT	Equipment Under Testing	Hz	Hertz
A	Ampere	V	Volt
VAr	Volt-Ampere reactive	W	Watt
EMC	Electromagnetic Compatibility	p.u	Per unit
Un	Nominal Voltage	Pn	Nominal Active Power
In	Nominal Current	Qn	Nominal Reactive Power
la	Active Current	Sn	Nominal Apparent Power
Ir	Reactive Current	THD	Total Harmonic Distortion
lh	Harmonic Current	TDD	Total Demand Distortion
PST	Severity of Flicker Short-Term	PLT	Severity of Flicker Long-Term
dc	Maximum Variation of Voltage	d(t)	Variation of Voltage
d max	Maximum Absolute Value of Voltage Variation	MPS	Medium Power Station

3 RESUME OF TEST RESULTS

INTERPRETATION KEYS

Test object does meet the requirement	Р	Pass
Test object does not meet the requirement	F	Fails
Test case does not apply to the test object	N/A	Not applicable
To make a reference to a table or an annex	See ad	ditional sheet
To indicate that the test has not been realized	N/R	Not realized

	STANDARD REQUIREMENTS				
	G59 Issue 3 Amendment 2: 2015				
CLAUGE	TEST	REMARKS			
13.8.3	Functional Testing		Р		
13.8.3.1	Disconnection Times		Р		
13.8.3.2	Over/Under Voltage		Р		
13.8.3.3	Over/Under Frequency		Р		
13.8.3.4	Loss of Mains		Р		
13.8.3.5	Reconnection		Р		
13.8.3.6	Frequency drift and step change stability		Р		
13.8.4	Power Quality				
13.8.4.1	Harmonics		Р		
13.8.4.2	Power Factor		Р		
13.8.4.3	Voltage Flicker		Р		
13.8.4.4	DC Injection		Р		
13.8.4.6	Short circuit current contribution		Р		
13.8.4.7	Self-Monitoring solid state	No solid state switching devices	N/A		
13.8.4.8	Electromagnetic Compatibility		Р		

Note: The declaration of conformity has been evaluated taking into account the IEC Guide 115.

4 TEST RESULTS

4.1 FUNCTIONAL TESTING

4.1.1 Disconnection Times

This test has been done according to the point 13.8.3.1 of the standard.

The results are shown on points 4.1.2.2 and 4.1.3.2 where times represented include delay time plus trip time. No trip time shall exceed the maximum trip time which is delay time plus 0.5s.

This test has been done performing two different tests:

- Trip voltage or frequency test, to asses that the protection function of the inverter works as the voltage and frequency levels stated by the standard.
- Trip time test, to asses that the disconnection of the inverter takes place into the time limits established by the standard.

Following indications shall be taken into account to for test results offered.

4.1.2 Over/ Under Voltage

4.1.2.1 Trip value test.

Tests have been done according to the point 13.8.3.2 of the standard, as the following procedure:

- For undervoltage protection: Starting from a voltage level 2%Un above the trip value of the protection function to be tested, the voltage is decreased 0,5%Un in steps of at least 150% of the trip time delay stated in the protection function to be tested.
- For overvoltage protection: Starting from a voltage level 2%Un below the trip value of the protection function to be tested, the voltage is increased 0,5%Un in steps of at least 150% of the trip time delay stated in the protection function to be tested.

Maximum deviation allowed in voltage trip value is ±1,5% Un. Trips have been repeated 5 times at each voltage level.

Following tables show the test results:

Stage/Prot Function	Test	Voltage at the start (V)	Trip Voltage Desired (V)	Trip voltage measured (V)	Disconnection		Deviation measured (%Un)
	1	230	200.10	199.22		⊠ YES	-0.383
	2	230	200.10	199.26		⊠ YES	-0.365
U/V st1 87% Un	3	230	200.10	199.42		⊠ YES	-0.296
	4	230	200.10	199.36		⊠ YES	-0.322
	5	230	200.10	199.13		⊠ YES	-0.422
	1	230	184.00	183.92		⊠ YES	-0.035
	2	230	184.00	183.97		⊠ YES	-0.013
U/V st2 80% Un	3	230	184.00	184.01		⊠ YES	0.004
	4	230	184.00	183.98		⊠ YES	-0.009
	5	230	184.00	184.08		⊠ YES	0.035
O/V st1 114% Un	1	230	262.20	262.84		⊠ YES	0.278
	2	230	262.20	262.59		🛛 YES	0.170
	3	230	262.20	262.93		🛛 YES	0.317
	4	230	262.20	262.64		⊠ YES	0.191
	5	230	262.20	262.58	□ NO	⊠ YES	0.165
	1	230	273.70	273.90		⊠ YES	0.087
	2	230	273.70	273.93		🛛 YES	0.100
O/V st2 119% Un	3	230	273.70	273.98		⊠ YES	0.122
	4	230	273.70	273.95		⊠ YES	0.109
	5	230	273.70	274.01		⊠ YES	0.135

Test results are graphically shown in following pages.

4.1.2.2 Trip time test.

The tests have been made as the following procedure:

- For undervoltage protection: Starting from a voltage level 2%Un above the trip value of the protection function to be tested, the voltage is decreased in a step of 4%Un and it is measured from that instant the time it takes to disconnect.
- For overvoltage protection: Starting from a voltage level 2%Un below the trip value of the protection function to be tested, the voltage is increased in a step of 4%Un and it is measured from that instant the time it takes to disconnect.

Trips have been repeated 5 times at each voltage level.

Following tables show the test results:

Stage/Prot Function	Test	Delay Time limit (s)	Maximum trip time (s)	Trip time measured (s)	Disco	nnection
U/V st1 87% Un	1	2.5	3.000	2.550		🛛 YES
	2	2.5	3.000	2.547	□ NO	🛛 YES
	3	2.5	3.000	2.556		⊠ YES
	4	2.5	3.000	2.547		⊠ YES
	5	2.5	3.000	2.556		⊠ YES
	1	0.5	1.000	0.528		⊠ YES
	2	0.5	1.000	0.520		⊠ YES
U/V st2 80% Un	3	0.5	1.000	0.518		⊠ YES
	4	0.5	1.000	0.528		⊠ YES
	5	0.5	1.000	0.520	□ NO	⊠ YES
	1	1.0	1.500	1.030		⊠ YES
	2	1.0	1.500	1.035		⊠ YES
O/V st1 114% Un	3	1.0	1.500	1.050		⊠ YES
	4	1.0	1.500	1.040		⊠ YES
	5	1.0	1.500	1.050		⊠ YES
	1	0.5	1.000	0.520		⊠ YES
	2	0.5	1.000	0.530		⊠ YES
O/V st2 119% Un	3	0.5	1.000	0.532		⊠ YES
	4	0.5	1.000	0.528		⊠ YES
	5	0.5	1.000	0.520		⊠ YES

4.1.3 Over/ Under Frequency

4.1.3.1 Trip value test.

The tests have been done according to point 13.8.3.3 of the Standard.

It was followed the procedure below:

- For underfrequency protection: Starting from a frequency level 0.3 Hz above the trip value of the protection function to be tested, the frequency is decreased 0.05 Hz in steps of at least 150% of the trip time delay stated in the protection function to be tested.
- For overfrequency protection: Starting from a frequency level 0.3 Hz below the trip value of the protection function to be tested, the frequency is increased 0.05 Hz in steps of at least 150% of the trip time delay stated in the protection function to be tested.

Maximum frequency deviation allowed is ±0.10 Hz. Each test was repeated five times.

Following tables show the test results.

Stage/Prot Function	Test	Frequency at the start (Hz)	Trip Frequency Desired (Hz)	Trip frequency measured (Hz)	Disconnection		Maximum deviation measured (Hz)
U/F st1 47 5 Hz	1	50	47.50	47.47	□ NO	🛛 YES	-0.03
	2	50	47.50	47.45		🛛 YES	-0.05
	3	50	47.50	47.47	□ NO	🛛 YES	-0.03
	4	50	47.50	47.47	□ NO	🛛 YES	-0.03
	5	50	47.50	47.48	□ NO	🛛 YES	-0.02
	1	50	47.00	46.93	□ NO	🛛 YES	-0.07
	2	50	47.00	46.94		🛛 YES	-0.06
U/f st2 47.0 Hz	3	50	47.00	46.94	□ NO	🛛 YES	-0.06
	4	50	47.00	46.95	□ NO	🛛 YES	-0.05
	5	50	47.00	46.93	□ NO	🛛 YES	-0.07
O/F st1 51.5 Hz	1	50	51.50	51.51	□ NO	🛛 YES	0.01
	2	50	51.50	51.50		⊠ YES	0.00
	3	50	51.50	51.51	□ NO	🛛 YES	0.01
	4	50	51.50	51.49		🛛 YES	-0.01
	5	50	51.50	51.50	□ NO	🛛 YES	0.00
	1	50	52.00	52.06		🛛 YES	0.06
O/F st2 52.0 Hz	2	50	52.00	52.06	□ NO	🛛 YES	0.06
	3	50	52.00	52.07		⊠ YES	0.07
	4	50	52.00	52.08		⊠ YES	0.08
	5	50	52.00	52.08	□ NO	🛛 YES	0.08

Test results are graphically shown in following pages.

4.1.3.2 Trip time test.

The tests have been made as the following procedure:

- For underfrequency protection: Starting from a frequency level above the trip value of the protection function to be tested, the frequency is decreased in a step to a value below the frequency setpoint of the protection function and it's measured from that instant the time it takes to disconnect.
- For overfrequency protection: Starting from a frequency level below the trip value of the protection function to be tested, the frequency is increased in a step to a value above the frequency setpoint of the protection function and it's measured from that instant the time it takes to disconnect.

The tests have been performed at rated power. Each protection function has been tested 5 times.

Following tables show the test results.

Stage/Prot Function	Test	Delay Time limit (s)	Maximum trip time (s)	Trip time measured (s)	Disconnection
	1	20	20.5	20.300	🗆 NO 🛛 YES
-	2	20	20.5	20.230	🗆 NO 🛛 YES
U/F st1 47.5 Hz	3	20	20.5	20.300	🗆 NO 🛛 YES
	4	20	20.5	20.370	🗆 NO 🛛 YES
	5	20	20.5	20.300	🗆 NO 🛛 YES
	1	0.5	1.0	0.646	🗆 NO 🛛 YES
	2	0.5	1.0	0.669	🗆 NO 🛛 YES
U/f st2 47.0 Hz	3	0.5	1.0	0.657	🗆 NO 🛛 YES
	4	0.5	1.0	0.660	🗆 NO 🛛 YES
	5	0.5	1.0	0.648	🗆 NO 🛛 YES
	1	90	90.5	90.300	🗆 NO 🛛 YES
	2	90	90.5	90.320	🗆 NO 🛛 YES
O/F st1 51.5 Hz	3	90	90.5	90.360	🗆 NO 🛛 YES
	4	90	90.5	90.370	🗆 NO 🛛 YES
	5	90	90.5	90.306	🗆 NO 🛛 YES
	1	0.5	1.0	0.516	🗆 NO 🛛 YES
	2	0.5	1.0	0.536	🗆 NO 🛛 YES
O/F st2 52.0 Hz	3	0.5	1.0	0.544	
	4	0.5	1.0	0.532	
	5	0.5	1.0	0.516	🗆 NO 🛛 YES

Test results are graphically shown in following pages.

Under frequency, Stage 2 - Test 1														
l l	500V/	2	50.0A	/ 3	5.00V	/ 4		*		300.09	s/ Stop	1	Roll	
	ATLATIATIATIAT	TALTAL		AT DATA DA				<u> </u>	<u>III (TAT</u>	LITER -				
1	≥												n ar frank Name - Angel Name - Angel	
2														
	والمربعة والمراجع والمراجع والمراجع		a di suu si si ka ji		h Ann bh dùn da b	Dines & Di Wilsing at y			in stations bein bit stations	 	n den 18 die die oberigen date mit einder eine	6 ()		
4	k ana sing kalansa ang kalaka kala	itogen at d	and and an and an and an	it hjór stæðallik	di sedalar ildar	<mark>na ngiliyan da k</mark> al	a tan a tan a	12960 (1297 K 1296 K 	9	аран 200 рели на 200 	والمعطور في والمتلك المستقل		ally is in the local second	
	$\Delta X = 646.0$	000	0000m	IS		1/∆X =	= 1.5480	Hz		ΔΥ	(<mark>1</mark>) = 387.	50V		
	◆ Mode Manua	ıl	Ð	Sourc 1	e	X	Y] <mark>€</mark> -2	X1 .76600:	s ව	X2 -2.12000s	N 1	X2	

	I	Under frequenc	y, Stage 2 - Tes	st 3	
1 500V/ 2	50.0A/ 3 5	5.00V/ 4	🔆 300	.0s/ Stop	Roll
2 ⊉					
	11 11 - 12 - 112 - 11 - 11 - 12 - 12 -			a politi kire anta, abadi ya je ji ji ji ji ji ji ji ji ji	
			n de la presidencia de la constante de la const		
∆x = 657.000 → Mode Manual	Source	$\begin{array}{c} 1/\Delta X = 1.5221 \\ X & Y \\ \checkmark \end{array}$	Hz X1 -3.09300s	$\begin{array}{c} \Delta Y(T) = 387.50V \\ \hline \\ \sim & X2 \\ -2.43600s \end{array} \begin{array}{c} \sim \\ \end{array} $	<1 X2

				Under	frec	quency,	Stage	2 - Test	5		
1 500\	// 2	50.0A	/ 3	5.00V/	4	÷	*	300.08	s/ Stop		Roll
12											
2											
						dur han skiler og	- I - I - I				
3		00000				1 5 400					
$\Delta X = 64$	18.000 ode nual		Source 1	e	∆x = X ✓	Y	★ X1 -2.997	00s	(1) = 387. X2 -2.34900s	00V	I X2

4.1.4 No trip Tests

No trip tests have been done according to the point 13.8.3.2 and tables of the chapter 13.1 of the standard.

To ensure that the protection will not trip in error voltage and frequency, "no-trip tests" have been carried out at frequencies, voltages and time configurations detailed bellow.

The test procedure consists in leading the inverter out from its normal conditions with a step to the setpoint of frequency or voltage established at the tables below and maintain the step for the time desired, once reached the time desired the inverter is taken back to the normal conditions, the inverter shall not trip during the test.

Test No	Voltage setting (V)	Time required (s)	Time measured (s)	Disconnection
1	180.0	0.48	0.48	⊠ NO □ YES
2	188.0	2.48	2.48	⊠ NO □ YES
3	204.1	3.5	3.5	⊠ NO □ YES
4	258.2	2.0	2.0	⊠ NO □ YES
5	269.7	0.98	0.98	⊠ NO □ YES
6	277.7	0.48	0.48	⊠ NO □ YES

4.1.4.1 Voltage no-trip tests

4.1.4.2 Frequency no-trip tests

Test No.	Frequency setting (Hz)	Time required (s)	Time measured (s)	Disconnection	
1	46.8	0.48	0.48	⊠ NO	□ YES
2	47.2	19.98	19.98	⊠ NO	□ YES
3	47.7	25	25	⊠ NO	□ YES
4	51.3	95	95	⊠ NO	□ YES
5	51.8	89.98	89.98	⊠ NO	
6	52.2	0.48	0.48	⊠ NO	□ YES

Test results are graphically shown in following pages.

4.1.5 Loss of Mains test

The test has been done according to point 13.8.3.4A of the standard.

Loss of Mains test has been carried out with the set up specified in the point 2.6 of this report, using the grid and RLC load bank at the AC side.

With a switch located between EUT/RLC bank and the grid is possible to do a loss of mains condition. Test has been done according to IEC 62116.

The compliances with these requirements are stated in the following test report:

- IEC 62116: test report nº 2217 / 1094-1

Note: Trip time limit is 1.0 seconds.

4.1.6 Reconnection

Test performed according to the point 13.8.3.5 of the standard.

The inverter shall only automatically reconnect when the voltage and frequency levels are within the stage 1 protection function limits. The minimum reconnection delay shall be at least 20 seconds

4.1.6.1 Voltage Reconnection Conditions

The three phases are adjusted to the same voltage level for this test. The following table detail tests performed.

Test at	Time delay setting(s)	Measured delay(s)	Checks on no reconnection when voltage brought to just outside stage 1 limits of table		
UV	65	72.8	At 266 2)/	At 106 1\/	
ov	65	71.2	Al 200.2 V	At 190.1V	
Confirma	ation that the SSEG d	oes not re-connect.	Not reconnection	Not reconnection	

Test results are graphically shown below.

4.1.6.2 Frequency Reconnection Conditions

The following table detail tests performed.

Test at	Time delay setting	Measured delay(*)	Checks on no reconnection when frequency brought to just outside stage 1 limits of table 1		
UF	65s	70.8			
OF	65s	70.0	Al 47.4HZ	At 31.0112	
Confirma	ation that the SSEG d	oes not re-connect.	Not reconnection	Not reconnection	

Test results are graphically shown below.

4.1.7 Frequency drifts and step changes.

These tests have been performed according to the point 13.8.3.6 of the standard, using the AC Source as variable frequency supply to the inverter. The AC source generates negative and positive ramps/steps of frequency and the inverter shall not disconnect.

4.1.7.1 Frequency drift test

The following table detail tests performed.

	Start frequency (Hz)	Change desired (Hz/s)	Final Value (Hz)	Time Change (s)	Ramp measured (Hz/s)	Disconnection
Positive frequency drift	49.5	+0.19	51.4	10	+0.19	⊠ NO □ YES
Negative frequency drift	50.5	-0.19	47.5	16	-0.19	⊠ NO □ YES

Test results are graphically shown in following pages.

4.1.7.2 Vector shift test.

This test has been performed programming with 9° vector shift in a voltage cycle and the inverter shall not disconnect.

	Start frequency	Jump Performed	Final Frequency (Hz)	Disconnection
Positive Vector Shift	49.5Hz	+9 degrees		⊠ NO □ YES
Negative Vector Shift	50.5Hz	-9 degrees		⊠ NO □ YES

Test results are graphically shown below.

Negative Vector Shift

Setting:

Vac et	LIST I	DODE SETTING	NV.		List Mode
Vac St	dit -	230.0	2.4		
vac en	ia =	230.0	J V		and the second
F st	art =	50.50	Hz		Trigger
F en	d =	50.50)Hz		
Vdc st	art =	0.0	V		Base
Vdc en	d =	0.0	V		11mc
Degree	=	351.0) •		Count
Wavefo	rm =	۵			
Time	=	99999	9.0ms		Sequence 1
					Execution Page
List Puls Mode Mod	se Step le Mode	Synthesis	Inter- harmonics	Harmonic Meas.	2017/11/01 15:33:48

Measured result:

4.2 POWER QUALITY

4.2.1 Current Harmonics

Harmonics measures have been performed according to the point 13.8.4.1 and regarding the procedures specified by BS EN 61000-3-12.

Measures have been repeated at $50\%P_n$ and $100\%P_n$.

	CS2000			Harmonic % =Measured Value (Amps) x 23/rating per phase (kVA)			
P _n (%)	5	0	1	00			
Nr./Order	I _h (A)	I _h (%)	I _h (A)	I _h (%)			
2	0.012	0.095	0.006	0.024	8.0		
3	0.260	1.990	0.449	1.725			
4	0.004	0.031	0.011	0.041	4.0		
5	0.119	0.910	0.180	0.691	10.7		
6	0.003	0.021	0.018	0.071	2.7		
7	0.111	0.851	0.142	0.547	7.2		
8	0.003	0.026	0.012	0.045	2.0		
9	0.113	0.863	0.141	0.540			
10	0.004	0.029	0.014	0.053	1.6		
11	0.106	0.812	0.158	0.607	3.1		
12	0.004	0.031	0.020	0.078	1.3		
13	0.094	0.719	0.123	0.473	2.0		
14	0.005	0.035	0.005	0.020			
15	0.080	0.616	0.104	0.398			
16	0.002	0.013	0.010	0.038			
17	0.069	0.530	0.100	0.383			
18	0.002	0.015	0.012	0.048			
19	0.053	0.409	0.076	0.293			
20	0.006	0.047	0.004	0.016			
21	0.039	0.296	0.053	0.203			
22	0.003	0.022	0.012	0.046			
23	0.028	0.217	0.037	0.143			
24	0.001	0.011	0.007	0.026			
25	0.019	0.147	0.029	0.111			
26	0.003	0.022	0.003	0.011			
27	0.012	0.090	0.018	0.070			
28	0.001	0.006	0.004	0.016			
29	0.012	0.091	0.008	0.029			
30	0.001	0.011	0.009	0.033			
31	0.011	0.087	0.011	0.043			
32	0.002	0.014	0.005	0.021			
33	0.009	0.066	0.011	0.042			
34	0.006	0.045	0.006	0.025			
35	0.010	0.074	0.009	0.033			
36	0.002	0.017	0.002	0.007			
37	0.010	0.080	0.009	0.034			
38	0.002	0.017	0.003	0.010			
39	0.010	0.074	0.008	0.030			
40	0.013	0.097	0.000	0.001			
THD (%)	0.311	2.914	0.590	2.267	13		
PWHD (%)	0.572	4.377	0.770	2.958	22		

4.2.2 Power Factor

The test was performed according to the point 13.8.4.2 of the standard.

The power factor was measured at three voltage levels at rated power. The voltage was maintained within $\pm 1.5\%$ of the stated level during the test.

The following table shows the test results at different voltage levels:

Power Fixed						
Voltage required (p.u)	Voltage measured (p.u)	PF required	PF measured	Active Power required (p.u)	Active Power measured (p.u)	
0,940	0.940	>0,95	0.995	1,000	1.001	
1,000	1.001	>0,95	0.996	1,000	1.000	
1,100	1.101	>0,95	0.995	1,000	1.000	

Test results are graphically shown below.

4.2.3 Voltage Flicker

This test has been performed according to the point 13.8.4.3 and regarding the procedures specified by BS EN 61000-3-3.

Test results offered have a reference grid impedance of 30°

The measurements of voltage fluctuations have been measured according to the standard, at 33%, 66% and 100 % of the nominal power value of the inverter.

Starting operation and Stopping operation							
Pbin (%)	Limit 33 % 66 % 100 %						
PST	≤ 1	0.08	0.10	0.12			
PLT	≤ 0.65	0.04	0.05	0.06			
dc	≤ 3.30%	0.21	0.35	0.48			
dmax	4%	0.25	0.54	0.81			

As it can be seen in the next screenshots, this test has two steps:

- 1. Starting operation
- 2. Stopping operation

All values are the most unfavorable of the two steps.

Starting operation and Stopping operation						
33% Pn						
	dc[%]	dmax[%]	d(t)[ms]	Pst	P1t	
Limit	3.30	6.00	500 3.30(%)	1.00	0.65 N:12	
No. 1	0.21 Pass	0.25 Pass	0 Pass	0.08 Pass		
2	0.04 Pass	0.10 Pass	0 Pass	0.07 Pass		
Result	Pass	Pass	Pass	Pass	0.04 Pass	

			66% Pn		
	dc[%]	dmax[%]	d(t)[ms]	Pst	P1t
Limit	3.30	6.00	500 3.30(%)	1.00	0.65 N:12
No. 1 2	0.35 Pass 0.11 Pass	0.54 Pass 0.15 Pass	O Pass O Pass	0.10 Pass 0.08 Pass	
Result.	Pass	Pass	Pass	Pass	0.05 Pass
		1	00% Pn		
	dc[%]	dmax[%]	d(t)[ms]	Pst	P1t
Límít	3.30	6.00	500 3.30(%)	1.00	0.65 N:12
No. 1 2	0.48 Pass 0.11 Pass	0.81 Pass 0.14 Pass	0 Pass 0 Pass	0.12 Pass 0.08 Pass	

Running operation						
Pbin (%)	Limit	33 %	66 %	100 %		
PST	≤ 1	0.08	0.11	0.07		
PLT	≤ 0.65	0.08	0.10	0.07		
dc	≤ 3.30%	0.24	0.44	0.00		
dmax	4%	0.30	0.60	0.00		

As it can be seen in the next screenshots is running operation. The values took of Pst and Plt are the most unfavorable of the twelve steps.

	Running operation					
	33% Pn					
	dc[%]	dmax[%]	d(t)[ms]	Pst	P1t	
Limit	3.30	6.00	500 3.30(%)	1.00	0.65 N:12	
No. 1	0.20 Pass	0.30 Pass	0 Pass	0.08 Pass		
2	0.17 Pass	0.30 Pass	0 Pass	0.08 Pass		
3	0.24 Pass	0.29 Pass	0 Pass	0.08 Pass		
4	0.16 Pass	0.24 Pass	0 Pass	0.08 Pass		
5	0.21 Pass	0.22 Pass	0 Pass	0.08 Pass		
6	0.24 Pass	0.24 Pass	0 Pass	0.08 Pass		
7	0.19 Pass	0.28 Pass	0 Pass	0.08 Pass		
8	0.18 Pass	0.29 Pass	0 Pass	0.08 Pass		
9	0.12 Pass	0.27 Pass	0 Pass	0.08 Pass		
10	0.20 Pass	0.21 Pass	0 Pass	0.08 Pass		
11	0.15 Pass	0.25 Pass	0 Pass	0.08 Pass		
12	0.21 Pass	0.25 Pass	0 Pass	0.08 Pass		
Result	Pass	Pass	Pass	Pass	0.08 Pass	

	66% Pn				
	dc[%]	dmax[%]	d(t)[ms]	Pst	P1t
Limit	3.30	6.00	500	1.00	0.65
			3.30(%)		N:12
No. 1	0.35 Pass	0.54 Pass	0 Pass	0.10 Pass	
2	0.34 Pass	0.57 Pass	0 Pass	0.10 Pass	
3	0.35 Pass	0.52 Pass	0 Pass	0.10 Pass	
4	0.39 Pass	0.53 Pass	0 Pass	0.10 Pass	
5	0.41 Pass	0.58 Pass	0 Pass	0.10 Pass	
6	0.34 Pass	0.57 Pass	0 Pass	0.10 Pass	
7	0.42 Pass	0.56 Pass	0 Pass	0.11 Pass	
8	0.13 Pass	0.16 Pass	0 Pass	0.08 Pass	
9	0.44 Pass	0.60 Pass	0 Pass	0.10 Pass	
10	0.42 Pass	0.48 Pass	0 Pass	0.10 Pass	
11	0.35 Pass	0.50 Pass	0 Pass	0.10 Pass	
12	0.41 Pass	0.52 Pass	0 Pass	0.10 Pass	
Result	Pass	Pass	Pass	Pass	0.10 Pass
		1	00% Pn		
	dc[%]	dmax[%]	d(t)[ms]	Pst	P1t
Límít	dc[%] 3.30	dmax[%] 6.00	d(t)[ms] 500	Pst 1.00	P1t 0.65
Limit	dc[%] 3.30	dmax[%] 6.00	d(t)[ms] 500 3.30(%)	Pst 1.00	P1t 0.65 N:12
Límit No. 1	dc[%] 3.30 0.00 Pass	dmax[%] 6.00 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass	Pst 1.00 0.07 Pass	P1t 0.65 N:12
Limit No. 1 2	dc[%] 3.30 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass	P1t 0.65 N:12
Limit No. 1 2 3	dc[%] 3.30 0.00 Pass 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass 0.07 Pass	P1t 0.65 N:12
Limit No. 1 2 3 4	dc[%] 3.30 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass	P1t 0.65 N:12
Limit No. 1 2 3 4 5	dc[%] 3.30 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass	P1t 0.65 N:12
Limit No. 1 2 3 4 5 6	dc[%] 3.30 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass	P1t 0.65 N:12
Limit No. 1 2 3 4 5 6 7	dc[%] 3.30 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass 0.07 Pass	P1t 0.65 N:12
Limit No. 1 2 3 4 5 6 7 8	dc[%] 3.30 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass	P1t 0.65 N:12
Limit No. 1 2 3 4 5 6 7 8 9	dc[%] 3.30 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass	P1t 0.65 N:12
Limit 2 3 4 5 6 7 8 9 10	dc[%] 3.30 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass	P1t 0.65 N:12
Limit No. 1 2 3 4 5 6 7 8 9 10 11	dc[%] 3.30 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass	P1t 0.65 N:12
Limit No. 1 2 3 4 5 6 7 8 9 10 11 11 12	dc[%] 3.30 0.00 Pass 0.00 Pass	dmax[%] 6.00 0.00 Pass 0.00 Pass	d(t)[ms] 500 3.30(%) 0 Pass 0 Pass	Pst 1.00 0.07 Pass 0.07 Pass	P1t 0.65 N:12

4.2.4 DC Injection

The evaluation of this point has been made according to the point 13.8.4.4 of the standard.

This test does not apply because the output of the inverter has to be connected to an external transformer.

The DC current must be smaller than 136.5 mA.

(25±5°C)						
	Min ~ 33% Pn Medium ~ 66% Pn Max ~ 100% Pn					
Test value (mA)	4.6	5.3	18.9			

4.2.5 Self Monitoring solid state distribution

The evaluation of this point has been made according to the point 13.8.4.7 of the standard.

This test does not apply because in the inverter there are not solid-state switching devices.

4.2.6 Short circuit current contribution

The test was performed according to the point 13.8.4.6 of the standard.

They have been performed different short circuit tests that are detailed in the table and pictures below.

Short circuit current					
Short Circuit Applied	Time after fault	Volts(V)	Amps(A)		
Line to neutral	20ms	1.92	23.82		
Line to neutral	100ms	1.75	20.34		
Line to neutral	250ms	0.04	0.23		
Line to neutral	500ms	0.25	0.08		
Line to neutral	Time to trip	0.13	In seconds		

4.2.7 Electromagnetic Compatibility

The compliances with these requirements is stated in the following test report:

According to the EU Declaration of Conformity issued by Schneider Electric, equipments under the scope of this test report meet the requirements of EMC directive 2014/30/UE and Low Voltage Directive 2014/35/EU. See point 7 of this report.

5 PICTURES

Front side of communication baord

Front side of Main board

Front side of Bus capacitors board ω 4 50 6 00 9 20 -N 6 6 4 S 60 N 10 11 15 13 14 12 19 11 18 16 50 51 55 53 54 52 59 51 58 56 50 31 35 Back side of Bus capacitors board N ωσ 4 50 6 0 \square 8 9 200 -N 000 007002-0 60 4 S 60 10 11 15 13 14 12 19 11 18 18 18 50 51 55 53 54 52 59 51 58 58 60 31 35 33 34 32 3

01

Removed all PCBAs

Serial Number of the EUT

6 ELECTRICAL SCHEMES

7 CE CONFORMITY CERTIFICATE

-----END OF REPORT--------